Activity 1: Good practices and puzzles

Mathematical symbols

Set of Numbers
- N: set of natural numbers: 1, 2, 3, ...
- Z: set of Integers: ..., −3, −2, −1, 0, 1, 2, 3, ...
- Q: set of rational numbers
- R: set of real numbers

Set of Operations
- +: addition
- −: substraction
- ×: multiplication
- ÷: division
- √: square root
- exp: exponential
- log: logarithm

Good practices in mathematics

Solve for x² = 2
Good practices in mathematics

Solve \(x^2 = 2 \)

- If \(x \) is a natural number: no solutions
- If \(x \) is an integer: no solutions
- If \(x \) is a rational number: no solutions
- If \(x \) is a positive real number: \(x = \sqrt{2} \)
- If \(x \) is a real number: \(x = \{ \sqrt{2}, -\sqrt{2} \} \)

Good practices in mathematics

Do not prove the obvious!!

Example:
Let \(x \) be a real number. Show that: \((x - 1)(x + 2) - x^2 + 2 = 2(x + 1) - x - 2 \)

Method 1: (unsatisfactory):
Develop on both sides:
\(x^2 + 2x - x^2 - 2 = 2x + 2 - x - 2 \)
\(2x + x = 2 \)
\(3x = 2 \)
\(x = \frac{2}{3} \)

But this is obvious!!

Method 2: (unsatisfactory):
Develop on both sides:
\((x - 1)(x + 2) - x^2 + 2 = 2(x + 1) - x - 2 \)
\(x^2 + 2x - x^2 - 2 = 2x + 2 - x - 2 \)
\(x = 1 \)

But this is obvious!!
Good practices in mathematics

Do not prove the obvious!

Example:
Let x be a real number. Show that:

$$(x - 1)(x + 2) - x^2 + 2 = 2(x + 1) - x - 2$$

Method 1 (algebraic):
1) Define:
 $$LHS = (x - 1)(x + 2) - x^2 + 2$$
 $$RHS = 2(x + 1) - x - 2$$

2) Compute LHS and RHS:
 $$LHS = x^2 + 2x - x - 2 - x^2 + 2 = x$$
 $$RHS = 2x + 2 - x - 2 = x$$

3) Compare LHS and RHS:
 $$LHS = RHS$$

4) Conclusion:
The property is true for all real numbers.

Example: a bottle of wine costs 11 dollars. The wine is worth 10 dollars more than the bottle. How much is the bottle worth?

Naively, we would say that the wine is worth 10 dollars and the bottle 1 dollar…

Reason!

Example: a bottle of wine costs 11 dollars. The wine is worth 10 dollars more than the bottle. How much is the bottle worth?

Reason!
Good practices in mathematics

Example:
A bottle of wine costs 11 dollars. The wine is worth 10 dollars more than the bottle. How much is the bottle worth?

Naively, we would say that the wine is worth 10 dollars and the bottle 1 dollar...

But then the wine would be worth 9 dollars more than the bottle!

Let W be the worth of the wine, and B the worth of the bottle.

What we know:
\[
\begin{align*}
W + B &= 11 \\
W &= B + 10
\end{align*}
\]

This system is easy to solve:
\[
\begin{align*}
B &= 0.5 \\
W &= 10.5
\end{align*}
\]

Logic Puzzles

The puzzles are set on a fictional island, Smullyan's island, where all inhabitants are either knights, who always tell the truth, or knaves, who always lie.

The puzzle involves a visitor to the island who meets small groups of inhabitants. The aim is for the visitor to deduce the inhabitants' types from their statements (the visitor cannot ask questions).

Example:
Let John and Bill be two inhabitants of the island. John says, "We are the same kind," but Bill says, "We are of different kinds." Can you find out what type John and Bill are?

How to solve such puzzles?
Let John and Bill be two inhabitants of the island. John says, "We are the same kind," but Bill says, "We are of different kinds." Can you find out what types John and Bill are?

<table>
<thead>
<tr>
<th></th>
<th>John</th>
<th>Bill</th>
<th>John's statement</th>
<th>Bill's statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Knight</td>
<td>Knight</td>
<td>TRUE</td>
<td>FALSE</td>
</tr>
<tr>
<td>2</td>
<td>Knight</td>
<td>Knave</td>
<td>FALSE</td>
<td>TRUE</td>
</tr>
<tr>
<td>3</td>
<td>Knave</td>
<td>Knight</td>
<td>FALSE</td>
<td>TRUE</td>
</tr>
<tr>
<td>4</td>
<td>Knave</td>
<td>Knave</td>
<td>TRUE</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

No: Bill is a knight that would lie

No: John is a knight that would lie

Yes

No: John is a knave that would tell the truth.
Let John and Bill be two inhabitants of the island. John says, "We are the same kind," but Bill says, "We are of different kinds." Can you find out what types John and Bill are?

<table>
<thead>
<tr>
<th>John</th>
<th>Bill</th>
<th>John's statement</th>
<th>Bill's statement</th>
<th>Validity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knight</td>
<td>Knight</td>
<td>TRUE</td>
<td>FALSE</td>
<td>No: Bill is a knight that would lie</td>
</tr>
<tr>
<td>Knight</td>
<td>Knave</td>
<td>FALSE</td>
<td>TRUE</td>
<td>No: John is a knight that would lie</td>
</tr>
<tr>
<td>Knave</td>
<td>Knight</td>
<td>FALSE</td>
<td>TRUE</td>
<td>Yes</td>
</tr>
<tr>
<td>Knave</td>
<td>Knave</td>
<td>TRUE</td>
<td>FALSE</td>
<td>No: John is a knave that would tell the truth</td>
</tr>
</tbody>
</table>

John and Bill are knaves

Let John and Bill be two inhabitants of the island. John says, "I and Bill are not of the same kind," but Bill says, "of John and I, exactly one is a knight." Can you find out what types John and Bill are?

<table>
<thead>
<tr>
<th>John</th>
<th>Bill</th>
<th>John's statement</th>
<th>Bill's statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knight</td>
<td>Knight</td>
<td>FALSE</td>
<td>FALSE</td>
</tr>
<tr>
<td>Knight</td>
<td>Knave</td>
<td>TRUE</td>
<td>TRUE</td>
</tr>
<tr>
<td>Knave</td>
<td>Knight</td>
<td>TRUE</td>
<td>TRUE</td>
</tr>
<tr>
<td>Knave</td>
<td>Knave</td>
<td>FALSE</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

John and Bill are knaves

Let John and Bill be two inhabitants of the island. John says, "I and Bill are not of the same kind," but Bill says, "of John and I, exactly one is a knight." Can you find out what types John and Bill are?

<table>
<thead>
<tr>
<th>John</th>
<th>Bill</th>
<th>John's statement</th>
<th>Bill's statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knight</td>
<td>Knight</td>
<td>FALSE</td>
<td>FALSE</td>
</tr>
<tr>
<td>Knight</td>
<td>Knave</td>
<td>TRUE</td>
<td>TRUE</td>
</tr>
<tr>
<td>Knave</td>
<td>Knight</td>
<td>TRUE</td>
<td>TRUE</td>
</tr>
<tr>
<td>Knave</td>
<td>Knave</td>
<td>FALSE</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

John and Bill are knaves
Let John and Bill be two inhabitants of the island. John says, “I am a knight or Bill is a knave,” but Bill says, “of John and I, exactly one is a knight.” Can you find out what types John and Bill are?

<table>
<thead>
<tr>
<th>John</th>
<th>Bill</th>
<th>John’s statement</th>
<th>Bill’s statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knight</td>
<td>Knight</td>
<td>TRUE</td>
<td>FALSE</td>
</tr>
<tr>
<td>Knight</td>
<td>Knave</td>
<td>TRUE</td>
<td>TRUE</td>
</tr>
<tr>
<td>Knave</td>
<td>Knight</td>
<td>FALSE</td>
<td>TRUE</td>
</tr>
<tr>
<td>Knave</td>
<td>Knave</td>
<td>TRUE</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

- **No**: Bill is a knight that would lie
- **No**: Bill is a knave that would tell the truth
- **Yes**
- **No**: John is a knave that would tell the truth

John is a knave and Bill is a knight!
Let John and Bill be two inhabitants of the island. John says something, but I can't hear what he says. Bill says, "We are both knaves." Can you find out what types John and Bill are?

<table>
<thead>
<tr>
<th>John</th>
<th>Bill</th>
<th>John's statement</th>
<th>Bill's statement</th>
<th>Validity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knight</td>
<td>Knight</td>
<td>FALSE</td>
<td>No Bill is a knight that would lie</td>
<td></td>
</tr>
<tr>
<td>Knight</td>
<td>Knave</td>
<td>FALSE</td>
<td>No: Bill is a knave that would lie</td>
<td></td>
</tr>
<tr>
<td>Knave</td>
<td>Knight</td>
<td>FALSE</td>
<td>No Bill is a knight that would lie</td>
<td></td>
</tr>
<tr>
<td>Knave</td>
<td>Knave</td>
<td>TRUE</td>
<td>No: Bill is a knave that would lie</td>
<td></td>
</tr>
</tbody>
</table>