Simulations
Patrice Koehl
Department of Biological Sciences
National University of Singapore

http://www.cs.ucdavis.edu/~koehl/
Teaching/BLS229
dbskoehl@nus.edu.sg

Hierarchical Simulations

Multi-scale

Deterministic simulations: Molecular dynamics

Stochastic simulations: Monte Carlo
Simulations

Deterministic simulations: Molecular dynamics

What is an atom?

- Classical mechanics: a point particle
- Defined by its position \((x,y,z)\) and its mass
- May carry an electric charge (positive or negative), usually partial (less than an electron)

Computing energy

\[
U = \sum_{i,j} \frac{1}{2} K_{ij} (b_i - b_j) \quad \text{ Bonds}
\]
\[
* \sum_{i,j} \frac{1}{2} K_{ij} (\theta_i - \theta_j) \quad \text{ Bond angles}
\]
\[
* \sum_{i,j} \left[\frac{1}{3} \epsilon_i \left(\frac{R_{ij}}{r_{ij}} \right)^2 - \frac{1}{2} \frac{\epsilon_i}{r_{ij}} \right] \quad \text{ Vdw interactions}
\]
\[
* \sum_{i,j} \frac{9 \eta_i}{4 \pi \varepsilon_0} \quad \text{ Electrostatics}
\]
What is a molecular dynamics simulation?

- Simulation that shows how the atoms in the system move with time
- Typically on the nanosecond timescale
- Atoms are treated like hard balls, and their motions are described by Newton’s laws.

Why MD simulations?

- Link physics, chemistry and biology
- Model phenomena that cannot be observed experimentally
- Understand protein folding...
- Access to thermodynamics quantities (free energies, binding energies,...)

How do we run a MD simulation?

- Get the initial configuration
 From x-ray crystallography or NMR spectroscopy
- Assign initial velocities
 At thermal equilibrium, the expected value of the kinetic energy of the system at temperature T is:
 \[
 \langle E_{\text{kin}} \rangle = \frac{1}{2} \sum_i m_i v_i^2 = \frac{1}{2} (3N) k_B T
 \]
 This can be obtained by assigning the velocity components v_i from a random Gaussian distribution with mean 0 and standard deviation $(k_B T/m_i)$:
 \[
 \langle v_i^2 \rangle = \frac{k_B T}{m_i}
 \]
For each time step:

Compute the force on each atom:

\[F(X) = -\nabla E(X) = -\frac{\partial E}{\partial X} \]

where \(X \) is the cartesian vector of the system.

Solve Newton’s 2nd law of motion for each atom, to get new coordinates and velocities:

\[M \dot{X} = F(X) \]

where \(M \) is a diagonal mass matrix.

\(\dot{} \) means second order differentiation with respect to time.

Store coordinates and velocities.

Stop

Newton’s equation cannot be solved analytically:

Use stepwise numerical integration.

What the integration algorithm does:

- Advance the system by a small time step \(\Delta t \) during which forces are considered constant.
- Recalculate forces and velocities.
- Repeat the process.

If \(\Delta t \) is small enough, solution is a reasonable approximation.

MD as a tool for minimization:

Energy minimization stops at local minima.

Molecular dynamics uses thermal energy to explore the energy surface.
Crossing energy barriers

The actual transition time from A to B is very quick (a few pico seconds). What takes time is waiting. The average waiting time for going from A to B can be expressed as:

\[\tau_{A \rightarrow B} = C e^{\frac{\Delta G}{kT}} \]

Simulations

Stochastic simulations: Monte Carlo

Monte Carlo: random sampling

A simple example:

Evaluate numerically the one-dimensional integral:

\[I = \int_a^b f(x) dx \]

Instead of using classical quadrature, the integral can be rewritten as

\[I = (b - a) \langle f(x) \rangle \]

\(\langle f(x) \rangle \) denotes the unweighted average of \(f(x) \) over \([a,b]\), and can be determined by evaluating \(f(x) \) at a large number of \(x \) values randomly distributed over \([a,b]\).

Monte Carlo method!
A famous example: Buffon’s needle problem

The probability that a needle of length \(L \) overlaps with one of the lines, distant from each other by \(D \), with \(L < D \) is:

\[
P = \frac{2L}{\pi D}
\]

For \(L = D \)

\[
P = \frac{2}{\pi}
\]

Method to estimate \(\pi \) numerically:

“Throw” \(N \) needles on the floor, find needles that cross one of the line (say \(C \) of them). An estimate of \(\pi \) is:

\[
\pi \approx \frac{2C}{N}
\]

Buffon, G. “Essai d'arithmétique morale.” Histoire naturelle, générale et particulière, Supplément 4, 46-123, 1777

Monte Carlo Sampling for protein structure

The probability of finding a protein (biomolecule) with a total energy \(E(X) \) is:

\[
P(X) = \frac{\exp\left(\frac{E(X)}{kT}\right)}{\int \exp\left(\frac{E(X)}{kT}\right) dX}
\]

Partition function

Estimates of any average quantity of the form:

\[
\langle A \rangle = \int A(X) P(X) dX
\]

taking uniform sampling would therefore be extremely inefficient.

Metropolis and coll. developed a method for directly sampling according to the actual distribution.

Monte Carlo Sampling for protein structure

Let:

\[
P(X) = \frac{\exp\left(\frac{E(X)}{kT}\right)}{\int \exp\left(\frac{E(Y)}{kT}\right) dY}
\]

And let \(\pi(X \rightarrow Y) \) be the transition probability from state \(X \) to state \(Y \).

Let us suppose we carry out a large number of Monte Carlo simulations, such that the number of points observed in conformation \(X \) is proportional to \(N(X) \).

The transition probability must satisfy one obvious condition: it should not destroy this equilibrium once it is reached. Metropolis proposed to realize this using the detailed balance condition:

\[
P(X \pi(X \rightarrow Y) = P(Y) \pi(Y \rightarrow X)
\]

\[
\pi(X \rightarrow Y) = \frac{P(Y \rightarrow X)}{P(X)} \exp\left(\frac{E(Y) - E(X)}{kT}\right)
\]
Monte Carlo Sampling for protein structure

There are many choices for the transition probability that satisfy the balance condition. The choice of Metropolis is:

$$\alpha(X \rightarrow Y) = \begin{cases} \exp\left(-\frac{E(Y) - E(X)}{kT}\right) & \text{if } E(Y) > E(X) \\ 1 & \text{if } E(Y) \leq E(X) \end{cases}$$

The Metropolis Monte Carlo algorithm:

1. Select a conformation X at random. Compute its energy E(X).
2. Generate a new trial conformation Y. Compute its energy E(Y).
3. Accept the move from X to Y with probability:
 $$P = \min(1, \exp\left(-\frac{E(Y) - E(X)}{kT}\right))$$
 Pick a random number RN, uniform in [0,1]. If RN < P, accept the move.
4. Repeat 2 and 3.

Monte Carlo Sampling for protein structure

Notes:

1. There are many types of Metropolis Monte Carlo simulations, characterized by the generation of the trial conformation.
2. The random number generator is crucial.
3. Metropolis Monte Carlo simulations are used for finding thermodynamics quantities, for optimization, ...
4. An extension of the Metropolis algorithm is often used for minimization: the simulated annealing technique, where the temperature is lowered as the simulation evolves, in an attempt to locate the global minimum.

Thank you!