Exercise 1

Let p and q be two propositions. Show that

\[
B = \neg (p \rightarrow q) \rightarrow \neg (\neg p \rightarrow \neg q)
\]

is a tautology.

\[
B = \neg p \rightarrow \neg q
\]

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$\neg q$</th>
<th>p</th>
<th>q</th>
<th>$\neg p$</th>
<th>$\neg q$</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

B is always true: B is a tautology.
Exercises 2

Let p and q be two propositions. I define the proposition p NOR q such that it is true when both p and q are false, and false otherwise. It is denoted $\neg p \lor \neg q$.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \lor q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

a) Show that $p \lor q$ is logically equivalent to $\neg (p \lor q)$.
\[
\begin{array}{cccc}
 p & q & p \lor q & \neg(p \lor q) \\
 T & T & T & F \\
 T & F & T & F \\
 F & T & T & F \\
 F & F & F & T \\
\end{array}
\]

\[p \lor q \text{ and } \neg(p \lor q)\] always have the same truth values. They are logically equivalent.

\[p \lor q \iff \neg(p \lor q)\]

b) Find a compound proposition logically equivalent to \[p \lor q\] that only uses the logical operator \[\Rightarrow\].

De Morgan's law: \[
\neg(p \lor q) \iff \neg p \land \neg q
\]
\[p \rightarrow q \iff \neg(p \lor q) \]
\[\iff \neg p \land \neg q \]

Rewrite this as:

\[\neg p \lor \neg q \iff \neg(p \land q) \]

\[A \iff \neg p \]
\[B \iff \neg q \]

\[A \land B \iff \neg A \lor \neg B \]

\[p \lor q \iff \neg (\neg p \lor q) \]
\[\iff \neg (p \lor q) \]
\[\iff \neg q = p \]
\[p \lor p \iff \neg (p \lor p) \]
\[\iff \neg p \]

\[A \land B \iff (A \downarrow A) \downarrow (B \downarrow B) \]
$$A \land B \iff (A \lor A) \lor (B \lor B)$$

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

have the same truth values; they are logically equivalent.

c) Find a compound proposition that is logically equivalent to $p \implies q$ that only uses the logical operator \lor.

\[
\begin{align*}
 p \lor q & \iff \neg (p \lor q) \\
 \neg p & \iff p \lor p \\
 p \lor q & \iff (p \lor p) \lor (q \lor q)
\end{align*}
\]
\[p \to q \iff \neg p \lor q \]

De Morgan's Law:
\[\neg (A \land B) \iff \neg A \lor \neg B \]

\[\neg (p \land \neg q) \iff \neg p \lor q \]

\[p \to q \iff \neg (p \land \neg q) \]
\[\iff \neg (p \land (q \lor \neg q)) \]
\[\iff \neg (p \land \top) \iff \neg (p \lor (q \land \neg q)) \]

\[p \to q \iff \neg (p \lor q \lor (q \land \neg q)) \iff \neg (p \lor \bot) \]

\[p \to q \iff \neg (p \lor q) \]

\[p \to q \iff \neg (p \lor q) \]

\[p \to q \iff \neg (p \lor q) \]

\[p \to q \iff \neg (p \lor q) \]

\[p \to q \iff \neg (p \lor q) \]

\[p \to q \iff \neg (p \lor q) \]

\[p \to q \iff \neg (p \lor q) \]

\[p \to q \iff \neg (p \lor q) \]

\[p \to q \iff \neg (p \lor q) \]

\[p \to q \iff \neg (p \lor q) \]
You find yourself in front of 3 rooms with closed doors. You are told that behind one door there is a princess, and behind the two others doors there are tigers. The rooms are guarded by guardians. Those guardians either tell the truth or lie.

| Room | Guardian
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Knight</td>
</tr>
<tr>
<td>2</td>
<td>Knave</td>
</tr>
<tr>
<td>3</td>
<td>Knave</td>
</tr>
</tbody>
</table>

- **Room 1**: The princess is behind my door.
- **Room 2**: There is exactly one liar among us, and the princess is behind my door.
- **Room 3**: We are all liars.

<table>
<thead>
<tr>
<th></th>
<th>S₁</th>
<th>S₂</th>
<th>S₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knight, Knight, Knight</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Knight, Knight, Knave</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Knight, Knave, Knight</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Knave, Knight, Knave</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Knave, Knave, Knight</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Knave, Knave, Knave</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>