Let \(n \) be an integer. Show that if \(2m^2 + n + 9 \) is odd then \(n \) is even.

\(A: \) \(2m^2 + n + 9 \) is odd \(\rightarrow A: 2m^2 + n + 9 \) is even

\(B: \) \(n \) is even \(\rightarrow B: n \) is odd

\[\text{Indirect proof: I assume } \neg B \text{ is true meaning } n \text{ is odd. There exists an integer } k \text{ such that } n = 2k + 1. \]

\[2m^2 + n + 9 = 2 \left((2k+1)^2 + 2k+1 + 9 \right) \]
\[= 2 \left(4k^2 + 4k + 1 + 2k + 1 + 9 \right) \]
\[= 2 \left(4k^2 + 6k + 12 \right) \]
\[= 2 \left(4k^2 + 5k + 6 \right) \]

\(4k^2 + 5k + 6 \) is an integer. Therefore \(2m^2 + n + 9 \) is even meaning \(\neg A \) is true.
Direct proof?

I assume that \(A \) is true, meaning \(2m^2 + n + 9 \) is odd.

There exists an integer \(k \) such that
\[
2m^2 + n + 9 = 2k + 1
\]

\[
m = 2k + 1 - 2m^2 - 9
\]
\[
= 2k - 2m^2 - 8
\]
\[
= 2(k - m^2 - 4)
\]

Since \(k - m^2 - 4 \) is an integer, \(n \) is even.

Therefore \(B \) is true. \(A \implies B \) is true.
\[A \rightarrow B, \quad \neg B \rightarrow \neg A, \quad \neg A \rightarrow \neg B \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>\neg A</th>
<th>\neg B</th>
<th>A \rightarrow B</th>
<th>\neg B \rightarrow \neg A</th>
<th>\neg A \rightarrow \neg B</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If John is a poet, then John is poor.

Problem:

Let \(a \) and \(b \) be two integers. Show that if \(a^2 (b^2 - 2b) \) is odd, then \(a \) is odd and \(b \) is odd.

A: \(a^2 (b^2 - 2b) \) is odd \(-A: a^2 (b^2 - 2b) \) is even

B: \(a \) is odd and \(b \) is odd \(-B: a \) is even or \(b \) is even.

\(-B\) seems easier to use than \(A \). I will use an indirect proof.
I want to show \(\neg B \Rightarrow \neg A \).

\(\neg B \): \(a \) is even or \(b \) is even.

\(\neg A \): \(a^2 (b^2 - 2b) \) is even.

Assumption: \(\neg B \) is true.

Case 1: \(a \) is even.

There exists an integer \(k \) such that \(a = 2k \).

\[a^2 (b^2 - 2b) = 4k^2 (b^2 - 2b) \]

\[= 2 \left[2k^2 (b^2 - 2b) \right] \]

\(2k^2 (b^2 - 2b) \) is an integer, \(a^2 (b^2 - 2b) \) is even.

In Case 1, \(\neg A \) is true.

Case 2: \(b \) is even.

There exists an integer \(k \) such that \(b = 2k \).

\[a^2 (b^2 - 2b) = a^2 (4k^2 - 4k) = 2 \left[a^2 (2k^2 - 2k) \right] \]

\(a^2 (2k^2 - 2k) \) is an integer. Therefore \(a^2 (b^2 - 2b) \) is even.

In Case 2, \(\neg A \) is true.

In all cases covered by \(\neg B \), we have shown that \(\neg A \) is true. Therefore \(\neg B \Rightarrow \neg A \) is true and, by contrapositive, \(A \Rightarrow B \) is true.
Let \(a \) and \(b \) be two integers. Show that if either \(ab \) or \(a+b \) is odd, then either \(a \) or \(b \) is odd.

A: \(ab \) is odd \(a+b \) is odd \(\neg A: \) \(a \) is even and \(b \) is even

B: \(a \) is odd \(b \) is odd \(\neg B: \) \(a \) is even and \(b \) is even

Indirect proof:

Assumption: \(\neg B \) is true, meaning \(a \) is even and \(b \) is even.

There exists an integer \(k \) such that \(a = 2k \).

There exists an integer \(p \) such that \(b = 2p \).

i) We show \(ab \) is even

\[ab = 2k \times 2p = 2(2kp) \]

As \(2kp \) is an integer, \(ab \) is even.

ii) We show \(a+b \) is even

\[a+b = 2k + 2p = 2(k+p) \]

\(k+p \) is an integer, therefore \(a+b \) is even.

We have shown that \(\neg A \) is true.

Therefore \(\neg B \to \neg A \) is true, and \(A \to B \) is true.
Let a and b be two integers. Use a direct proof to show that if $a^2 + b^2$ is even, then $a + b$ is even.

A: $a^2 + b^2$ is even

B: $a + b$ is even

Direct proof: I assume that A is true, meaning $a^2 + b^2$ is even. There exists an integer k such that $a^2 + b^2 = 2k$.

$$(a+b)^2 = a^2 + b^2 + 2ab$$

$$= 2k + 2ab$$

$$= 2(k + ab)$$

$k + ab$ is an integer. Therefore $(a + b)^2$ is even.

$(a + b)^2$ is even

If m^2 is even, then m is even. Therefore $(a + b)$ is even.