Midterm 2: solutions

Exercise 1 (2 questions, 20 points total)

Let n be an integer. Give a direct proof and an indirect proof of the proposition, if n is odd then $2n^2 + 5n + 2$ is odd

We want to prove an implication of the form $p \rightarrow q$ is true, with:

p: n is odd

$\neg p$: n is even

q: $2n^2 + 5n + 2$ is odd

$\neg q$: $2n^2 + 5n + 2$ is even

We use two methods of proof:

a) Direct proof: we show $p \rightarrow q$ is true.

Let us assume that p is true, i.e. that n is odd. There exists an integer k such that $n = 2k + 1$. Therefore,

$$2n^2 + 5n + 2 = 2(2k + 1)^2 + 5(2k + 1) + 2 = 8k^2 + 18k + 9 = 2(4k^2 + 9k + 4) + 1$$

As k is an integer, $4k^2 + 9k + 4$ is an integer which we call l. Therefore $2n^2 + 5n + 2 = 2l + 1$, i.e. it is odd.

We have shown that q is true when p is true: the proposition $p \rightarrow q$ is true.

b) Indirect proof: we show $\neg q \rightarrow \neg p$ is true.

Let us assume that $\neg q$ is true, i.e. that $2n^2 + 5n + 2$ is even. There exists an integer k such that $2n^2 + 5n + 2 = 2k$. Therefore,

$$2n^2 + 4n + n + 2 = 2k$$

$$n = 2k - 2n^2 - 4n - 2 = 2(k - n^2 - 2n - 1)$$
As \(k \) and \(n \) are integers, \(k - n^2 - 2n - 1 \) is an integer which we call \(l \). Therefore \(n = 2l \), i.e. it is even.

We have shown that \(\neg p \) is true when \(\neg q \) is true: the proposition \(\neg q \rightarrow \neg p \) is true and, by equivalence, \(p \rightarrow q \) is true.

Exercise 2 (1 question, 10 points)

Let \(m \) and \(n \) be 2 integers. Using the method of proof of your choice, show that if \(mn \) is odd, then \(m \) is odd and \(n \) is odd.

We want to prove an implication of the form \(p \rightarrow q \) is true, with:

\(p: \) \(mn \) is odd
\(\neg p: \) \(mn \) is even
\(q: \) \(m \) is odd and \(n \) is odd
\(\neg q: \) \(m \) is even or \(n \) is even

We use an indirect proof: we show that \(\neg q \rightarrow \neg p \) is true.

Let us assume that \(\neg q \) is true, namely that \(m \) is even or \(n \) is even. We consider two cases:

a)\(m \) is even. There exists an integer \(k \) such that \(m = 2k \). Then,

\[
mn = 2kn = 2(kn)
\]

As \(k \) and \(n \) are integers, \(kn \) is an integer which we call \(l \). Therefore \(mn = 2l \), i.e. it is even.

b)\(n \) is even. There exists an integer \(k \) such that \(n = 2k \). Then,

\[
mn = 2km = 2(km)
\]

As \(k \) and \(m \) are integers, \(km \) is an integer which we call \(l \). Therefore \(mn = 2l \), i.e. it is even.

In both cases, we have shown that \(mn \) is even. Therefore \(\neg p \) is true when \(\neg q \) is true. the proposition \(\neg q \rightarrow \neg p \) is true and, by equivalence, \(p \rightarrow q \) is true.

Exercise 3 (1 question, 10 points)

Let \(n \) be an integer. Use a proof by contradiction to show that \(\frac{6n+1}{2n+4} \) is not an integer.

Let:

\(P: \) \(\frac{6n+1}{2n+4} \) is not an integer

We use a proof by contradiction. We assume that \(P \) is false, i.e. we assume that \(\frac{6n+1}{2n+4} \) is an integer. Let us name this integer as \(k \). We have:

\[
\frac{6n+1}{2n+4} = k
\]
which we rewrite as:

\[6n + 1 = k(2n + 4) \]

Let \(LHS = 6n + 1 \) and \(RHS = k(2n + 4) \). Notice that:

\[LHS = 2(3n) + 1 \]

Since \(n \) is an integer, \(3n \) is an integer and therefore \(LHS \) is odd. Conversely,

\[RHS = 2(k(n + 2)) \]

As \(k \) and \(n \) are integers, \(k(n + 2) \) is an integer which we call \(l \). Therefore \(RHS = 2l \), i.e. it is even.

Under the assumption that \(P \) is false, we find that \(LHS = RHS \) with \(LHS \) odd and \(RHS \) even. Since an even number cannot be equal to an odd number, we have reached a contradiction. Therefore the assumption that \(P \) is false, is false, i.e. \(P \) is true.

Exercise 4 (1 question, 10 points)

Let \(n \) be a natural number (i.e., \(n \) is a positive integer different from 0). Use a proof by contradiction to show that if \(n \) is a perfect square, then \(2n \) is not a perfect square. (A natural number \(n \) is a perfect square if and only if there exists an integer \(k \) such that \(n = k^2 \)).

We want to prove an implication of the form \(p \rightarrow q \) is true, with:

\[p: n \text{ is a perfect square} \]
\[\neg p: n \text{ is not a perfect square} \]
\[q: 2n \text{ is not a perfect square} \]
\[\neg q: 2n \text{ is a perfect square} \]

We use a proof by contradiction. We assume that \(p \rightarrow q \) is false, i.e. that \(p \) is true AND \(q \) is false.

Since \(p \) is true, \(n \) is a perfect square: there exists an integer \(k \) such that \(n = k^2 \).

Since \(q \) is false, \(2n \) is a perfect square: there exists an integer \(l \) such that \(2n = l^2 \).

Replacing \(n \) by \(k^2 \), we get:

\[2k^2 = l^2 \]

As \(n \) is non zero, \(l \) is not zero. Therefore:

\[2 = \frac{k^2}{l^2} \]

Taking the square root (the numbers are now real),

\[\sqrt{2} = \frac{|k|}{|l|} \]

As \(k \) is an integer, \(|k| \) is an integer. Similarly, as \(l \) is an integer, \(|l| \) is an integer. This would lead to \(\sqrt{2} \) is rational: this is a contradiction, as we know that \(\sqrt{2} \) is irrational.

Therefore the assumption that \(p \rightarrow q \) is false, is false, i.e. \(p \rightarrow q \) is true.
Exercise 5 (1 question, 10 points)

Let x be a real number. Show that if $x^3 + x^2 - 2x < 0$, then $x < 1$.

We want to prove an implication of the form $p \rightarrow q$ is true, with:

p: $x^3 + x^2 - 2x < 0$

$\neg p$: $x^3 + x^2 - 2x \geq 0$

q: $x < 1$

$\neg q$: $x \geq 1$

We use an indirect proof, i.e. we prove that $\neg q \rightarrow \neg p$ is true. We assume that $\neg q$ is true, i.e. that $x \geq 1$.

Let $A = x^3 + x^2 - 2x$. Notice that,

$$A = x(x-1)(x+2)$$

We know that:

i) $x > 0$ since $x \geq 1$

ii) $x-1 \geq 0$ since $x \geq 1$

iii) $x+2 > 0$ since $x \geq 1$

The three terms in A are positive: A is positive. Therefore $\neg p$ is true.

We have shown that $\neg p$ is true when $\neg q$ is true. the proposition $\neg q \rightarrow \neg p$ is true and, by equivalence, $p \rightarrow q$ is true.

Exercise 6 (1 question, 10 points)

Prove or disprove that there exists an integer n such that $n^2 + 3n + 2$ is odd.

Let:

$P :$ There exists an integer n such that $n^2 + 3n + 2$ is odd

P is likely to be false. To prove that it is false, we need to show that $\neg P$ is true, namely that

$\neg P :$ For all integers n, $n^2 + 3n + 2$ is even.

We use a proof by case:

case a) n is even.

There exists an integer k such that $n = 2k$. Then,

$$n^2 + 3n + 2 = (2k)^2 + 3(2k) + 2$$

$$= 4k^2 + 6k + 2$$

$$= 2(2k^2 + 3k + 1)$$

As k is an integer, $2k^2 + 3k + 1$ is an integer which we call l. Therefore $n^2 + 3n + 2 = 2l$, i.e. it is even.
case b) n is odd.

There exists an integer k such that $n = 2k + 1$. Then,

$$n^2 + 3n + 2 = (2k + 1)^2 + 3(2k + 1) + 2$$
$$= 4k^2 + 4k + 1 + 6k + 3 + 2$$
$$= 2(2k^2 + 5k + 3)$$

As k is an integer, $2k^2 + 5k + 3$ is an integer which we call l. Therefore $n^2 + 3n + 2 = 2l$, i.e. it is even.

In all cases, $n^2 + 3n + 2$ is even.

We have shown that $\neg P$ is true, therefore the original proposition P is false.