Exercise 1

Let a and b be two real numbers.

a) Show that $(a^2 + b^2)^2 = (a^2 - b^2)^2 + (2ab)^2$

Let $LHS = (a^2 + b^2)^2$ and $RHS = (a^2 - b^2)^2 + (2ab)^2$. Then:

$LHS = a^4 + b^4 + 2a^2b^2$

and

$RHS = a^4 + b^4 - 2a^2b^2 + 4a^2b^2$

$= a^4 + b^4 + 2a^2b^2$

Therefore $LHS = RHS$ for all a and b, and the identity is true.

b) $a^4 - b^4 = (a - b)(a + b)(a^2 + b^2)$

Let $LHS = a^4 - b^4$ and $RHS = (a - b)(a + b)(a^2 + b^2)$. Then:

$RHS = (a^2 - b^2)(a^2 + b^2)$

$= a^4 - b^4$

Therefore $LHS = RHS$ for all a, b, and the identity is true.
Exercise 2

a) Show that there are no positive integer number \(n \) such that \(n^2 + n^3 = 100 \)

Let \(n \) be a positive integer. Since \(n > 0, n^2 > 0 \) and \(n^3 > 0 \). We note first that if \(n \geq 5 \), then \(n^3 \geq 125 \), i.e. \(n^3 > 100 \), and therefore \(n^2 + n^3 > 100 \). The only possible solutions are therefore \(n = 0, n = 1, n = 2, n = 3, \) and \(n = 4 \). We test each of those values separately:

i) \(n = 0 \) then \(n^2 + n^3 = 0 \neq 100. \) \(n = 0 \) is not a solution.

ii) \(n = 1 \) then \(n^2 + n^3 = 2 \neq 100. \) \(n = 1 \) is not a solution.

iii) \(n = 2 \) then \(n^2 + n^3 = 12 \neq 100. \) \(n = 2 \) is not a solution.

iv) \(n = 3 \) then \(n^2 + n^3 = 36 \neq 100. \) \(n = 3 \) is not a solution.

v) \(n = 4 \) then \(n^2 + n^3 = 80 \neq 100. \) \(n = 4 \) is not a solution.

Therefore there are no positive integer number \(n \) such that \(n^2 + n^3 = 100 \).

b) Prove that there are no solutions in integers \(x \) and \(y \) to the equation \(2x^2 + 5y^2 = 14 \).

Let \(x \) and \(y \) be two integers. We note first that \(x^2 \geq 0 \) and \(y^2 \geq 0 \). Then, if \(y \leq -2 \) or \(y \geq 2 \), \(y^2 \geq 4 \) and \(5y^2 \geq 20 \). Therefore we can conclude that \(y = -1, y = 0, \) or \(y = 1 \). We look at all three cases separately:

i) \(y = -1 \) or \(y = 1 \); then \(2x^2 = 9 \); the left hand side is even, while the right hand side is odd: this equation has no solution.

ii) \(y = 0 \) then \(2x^2 = 14 \) or \(x^2 = 7 \). We check all possible values of \(x \):

* \(x = 0 \); then \(x^2 = 0 \) → No.
* \(x = 1 \) or \(x = -1 \); then \(x^2 = 1 \) → No.
* \(x = 2 \) or \(x = -2 \); then \(x^2 = 4 \) → No.
* \(x \geq 3 \) or \(x < leq -3 \) then \(x^2 \geq 9 \) → No.

Therefore there are no integers \(x \) and \(y \) that satisfy the equation \(2x^2 + 5y^2 = 14 \).

Exercise 3

Let \(x \) be a real number. Solve \(\sqrt{x^2 - 7} = \sqrt{1 - x^2} \)

We need to define the domain of the equation first. This equation involves two square root functions that are defined if and only if their arguments are positive. Therefore: \(D = \{ x \in \mathbb{R} | x^2 - 7 \geq 0 \ and \ 1 - x^2 \geq 0 \} \).

Let us look at both conditions:

i) \(x^2 - 7 \geq 0 \) implies that \(x \leq \sqrt{7} \) or \(x \geq \sqrt{7} \)

ii) \(1 - x^2 \geq 0 \) implies that \(-1 \leq x \leq 1 \)

These two conditions are incompatible. Therefore \(D = \emptyset \), and the equation does not have any solutions.
Exercise 4

Three consecutive integers add up to 51. What are those three integers?

Let a be an integer. The two integers that follow a are $a + 1$ and $a + 2$. Therefore:

$$a + a + 1 + a + 2 = 51$$
$$3a + 3 = 51$$
$$3a = 48$$
$$a = 16$$

Therefore the three consecutive integers that add up to 51 are 16, 17, and 18.