Exercise 1: proofs

• a) Let x and y be two integers. Show that if $2x + 5y = 14$ and $y \neq 2$, then $x \neq 2$.

We need to prove an implication of the form $p \rightarrow q$, where p and q are defined as:

\[p : 2x + 5y = 14 \text{ and } y \neq 2 \]
\[q : x \neq 2 \]

We will use a proof by contradiction, namely we will suppose that the property is false, and find that this leads to a contradiction.

Hypothesis: $p \rightarrow q$ is false, which is equivalent to saying that p is true, AND q is false.

Therefore, $2x + 5y = 14$ and $y \neq 2$ and $x = 2$. Replacing x by its value in the first equation, we get $4 + 5y = 14$, namely $y = 2$. Therefore we have $y = 2$ and $y \neq 2$: we have reached a contradiction.

Therefore the hypothesis is false, which means that $p \rightarrow q$ is true.

• b) Let x and y be two integers. Show that if $x^2 + y^2$ is odd, then $x + y$ is odd.

We need to prove an implication of the form $p \rightarrow q$, where p and q are defined as:

\[p : x^2 + y^2 \text{ is odd} \]
\[q : x + y \text{ is odd} \]

We will use an indirect proof, namely instead of showing that $p \rightarrow q$, we will show the equivalent property $\neg q \not\rightarrow \neg p$, where:

\[\neg q : x + y \text{ is even} \]
\[\neg p : x^2 + y^2 \text{ is even} \]

Hypothesis: $\neg q$ is true, namely $x + y$ is even. Since $x + y$ is even, $(x + y)^2$ is even (result from class). Therefore there exists an integer k such that $(x + y)^2 = 2k$. We note also that:

\[(x + y)^2 = x^2 + y^2 + 2xy, \]

Therefore,

\[x^2 + y^2 = 2k - 2xy = 2(k - xy) \]

Since $k - xy$ is an integer, we conclude that $x^2 + y^2$ is even, namely that $\neg p$ is true.

We have shown that $\neg q \not\rightarrow \neg p$ is true; we can conclude that $p \rightarrow q$ is true.
Exercise 2
Let \(S = \{-1, 0, 2, 4, 7\} \). Find \(f(S) \) if:

- **a)**. \(f(x) = 1 \)

 Since \(f(x) = 1 \) for all elements of \(S \), \(f(S) = \{1\} \).

- **b)**. \(f(x) = 2x + 1 \)

 \(f(-1) = -1, f(0) = 1, f(2) = 5, f(4) = 9, \) and \(f(7) = 15 \). Therefore \(f(S) = \{-1, 1, 5, 9, 15\} \).

- **c)**. \(f(x) = \left\lfloor \frac{x}{5} \right\rfloor \)

 \(f(-1) = -1, f(0) = 0, f(2) = 0, f(4) = 0, \) and \(f(7) = 2 \). Therefore \(f(S) = \{-1, 0, 1\} \).

- **d)**. \(f(x) = \left\lfloor \frac{x^2+1}{3} \right\rfloor \)

 \(f(-1) = 0, f(0) = 0, f(2) = 1, f(4) = 5, \) and \(f(7) = 16 \). Therefore \(f(S) = \{0, 1, 5, 16\} \).

Exercise 3
Let \(S \) be a subset of a universe \(U \). The characteristic function \(f_S \) of \(S \) is the function from \(U \) to the set \(\{0, 1\} \) such that \(f_S(x) = 1 \) if \(x \) belongs to \(S \) and \(f_S(x) = 0 \) if \(x \) does not belong to \(S \). Let \(A \) and \(B \) be two sets. Show that for all \(x \) in \(U \),

- **a)**. \(f_{A \cap B}(x) = f_A(x)f_B(x) \)

 Let \(x \) be an element of \(U \). Let us call \(LHS(x) = f_{A \cap B}(x) \) and \(RHS(x) = f_A(x)f_B(x) \). We distinguish two cases:

 (i) \(x \in A \cap B \). Then \(LHS(x) = f_{A \cap B}(x) = 1 \), by definition of \(f_{A \cap B} \). Also, since \(x \in A \cap B \), then \(x \in A \) and \(x \in B \), therefore \(f_A(x) = 1 \) and \(f_B(x) = 1 \), i.e. \(RHS(x) = 1 \).

 (ii) \(x \notin A \cap B \). Then \(LHS(x) = f_{A \cap B}(x) = 0 \), by definition of \(f_{A \cap B} \). Also, since \(x \notin A \cap B \), then \(x \notin A \) or \(x \notin B \), therefore \(f_A(x) = 0 \) or \(f_B(x) = 0 \), i.e. \(RHS(x) = 0 \).

 The property is therefore true for all \(x \) in \(U \).

- **b)**. \(f_{A \cup B}(x) = f_A(x) + f_B(x) - f_A(x)f_B(x) \)

 Let \(x \) be an element of \(U \). Let us call \(LHS(x) = f_{A \cup B}(x) \) and \(RHS(x) = f_A(x) + f_B(x) - f_A(x)f_B(x) \). We distinguish four cases:

 (i) \(x \in A \) and \(x \in B \). Then \(LHS(x) = f_{A \cap B}(x) = 1 \), as \(x \in A \cup B \). Also, \(f_A(x) = 1 \) and \(f_B(x) = 1 \), therefore \(RHS(x) = 1 + 1 - 1 = 1 \).

 (ii) \(x \in A \) and \(x \notin B \). Then \(LHS(x) = f_{A \cap B}(x) = 1 \), as \(x \in A \cup B \). Also, \(f_A(x) = 1 \) and \(f_B(x) = 0 \), therefore \(RHS(x) = 1 + 0 - 0 = 1 \).

 (iii) \(x \notin A \) and \(x \in B \). Then \(LHS(x) = f_{A \cap B}(x) = 1 \), as \(x \in A \cup B \). Also, \(f_A(x) = 0 \) and \(f_B(x) = 1 \), therefore \(RHS(x) = 0 + 1 - 0 = 1 \).

 (iv) \(x \notin A \) and \(x \notin B \). Then \(LHS(x) = f_{A \cap B}(x) = 0 \), as \(x \notin A \cup B \). Also, \(f_A(x) = 0 \) and \(f_B(x) = 0 \), therefore \(RHS(x) = 0 + 0 - 0 = 0 \).

 The property is therefore true for all \(x \) in \(U \).
Exercise 4

Let \(n \) be an integer. Show that \(\left\lfloor \frac{n}{2} \right\rfloor \left\lceil \frac{n}{2} \right\rceil = \left\lfloor \frac{n^2}{4} \right\rfloor \).

Let \(n \) be an integer. We define \(\text{LHS}(n) = \left\lfloor \frac{n}{2} \right\rfloor \left\lceil \frac{n}{2} \right\rceil \) and \(\text{RHS}(n) = \left\lfloor \frac{n^2}{4} \right\rfloor \). Since we consider the division of \(n \) by 2, we consider two cases:

(i) \(n \) is even. Then there exists \(k \in \mathbb{Z} \) such that \(n = 2k \). Then:

\[
\left\lfloor \frac{n}{2} \right\rfloor = k, \quad \left\lceil \frac{n}{2} \right\rceil = k, \text{ therefore } \text{LHS}(n) = k^2.
\]

\(n^2 = 4k^2 \), therefore \(\left\lfloor \frac{n^2}{4} \right\rfloor = k^2 \), i.e. \(\text{RHS}(n) = k^2 \).

(ii) \(n \) is odd. Then there exists \(k \in \mathbb{Z} \) such that \(n = 2k + 1 \). Then:

\[
\left\lfloor \frac{n}{2} \right\rfloor = k, \quad \left\lceil \frac{n}{2} \right\rceil = k + 1, \text{ therefore } \text{LHS}(n) = k^2 + k.
\]

\(n^2 = 4k^2 + 4k + 1 \), therefore \(\left\lfloor \frac{n^2}{4} \right\rfloor = k^2 + k \), i.e. \(\text{RHS}(n) = k^2 + k \).

The property is therefore true for all \(n \) in \(\mathbb{Z} \).