Exercise 0: Additional problems on proofs

• a) Let x and y be two integers. Show that if $2x + 5y = 14$ and $y \neq 2$, then $x \neq 2$.

We need to prove an implication of the form $p \rightarrow q$, where p and q are defined as:

$p : 2x + 5y = 14$ and $y \neq 2$
$q : x \neq 2$

We will use a proof by contradiction, namely we will suppose that the property is false, and find that this leads to a contradiction.

Hypothesis: $p \rightarrow q$ is false, which is equivalent to saying that p is true, AND q is false.

Therefore, $2x + 5y = 14$ and $y \neq 2$ and $x = 2$. Replacing x by its value in the first equation, we get $4 + 5y = 14$, namely $y = 2$. Therefore we have $y = 2$ and $y \neq 2$: we have reached a contradiction.

Therefore the hypothesis is false, which means that $p \rightarrow q$ is true.

• b) Let x and y be two integers. Show that if $x^2 + y^2$ is odd, then $x + y$ is odd.

We need to prove an implication of the form $p \rightarrow q$, where p and q are defined as:

$p : x^2 + y^2$ is odd
$q : x + y$ is odd

We will use an indirect proof, namely instead of showing that $p \rightarrow q$, we will show the equivalent property $\lnot q \nrightarrow \lnot p$, where:

$\lnot q : x + y$ is even
$\lnot p : x^2 + y^2$ is even

Hypothesis: $\lnot q$ is true, namely $x + y$ is even. Since $x + y$ is even, $(x + y)^2$ is even (result from class). Therefore there exists an integer k such that $(x + y)^2 = 2k$. We note also that:

$(x + y)^2 = x^2 + y^2 + 2xy$,

Therefore, $x^2 + y^2 = 2k - 2xy = 2(k - xy)$.

Since $k - xy$ is an integer, we conclude that $x^2 + y^2$ is even, namely that $\lnot p$ is true.

We have shown that $\lnot q \nrightarrow \lnot p$ is true; we can conclude that $p \rightarrow q$ is true.
Exercise 1

To show that \(f \) is bijective (or not) from \(\mathbb{R} \) to \(\mathbb{R} \), we need to check: (i) that it is a function, (ii) that it is one-to-one (injective), and (iii) that it is onto (surjective).

- **a)** \(f(x) = 2x + 4 \)

 (i) \(f \) is a function from \(\mathbb{R} \) to \(\mathbb{R} \), as its domain is \(\mathbb{R} \).

 (ii) Let us show that \(f \) is injective. Let \(x \) and \(y \) be two real numbers such that \(f(x) = f(y) \). Then \(2x + 4 = 2y + 4 \), therefore \(x = y \). \(f \) is injective.

 (iii) Let us show that \(f \) is surjective. Let \(y \) be an element of the co-domain, \(\mathbb{R} \). To find if there exists a real number \(x \) such that \(f(x) = y \), we solve the equation \(f(x) = y \), i.e. \(2x + 4 = y \). We find \(x = \frac{y - 4}{2} \), i.e. \(x \) exists for each value of \(y \). \(f \) is surjective.

 We conclude that \(f \) is bijective.

- **b)** \(f(x) = x^2 + 1 \)

 (i) \(f \) is a function from \(\mathbb{R} \) to \(\mathbb{R} \), as its domain is \(\mathbb{R} \).

 (ii) Is \(f \) injective? Let \(x \) and \(y \) be two real numbers such that \(f(x) = f(y) \). Then \(x^2 + 1 = y^2 + 1 \), i.e. \(x^2 - y^2 = 0 \). This leads to \((x - y)(x + y) = 0 \), therefore \(x = y \) or \(x = -y \). For example, \(f(1) = f(-1) \): \(f \) is not injective; it is therefore not bijective.

- **c)** \(f(x) = (x + 1)/(x + 2) \)

 (i) \(f \) is not a function from \(\mathbb{R} \) to \(\mathbb{R} \), as it is not defined for \(x = -2 \). The domain \(D \) is \(\mathbb{R} - \{-2\} \).

 It is a function from \(D \) to \(\mathbb{R} \). Is it a bijection from \(D \) to \(\mathbb{R} \)?

 (ii) Let \(x \) and \(y \) be two real numbers such that \(f(x) = f(y) \). Then \((x + 1)/(x + 2) = (y + 1)/(y + 2) \), i.e. \((x + 1)(y + 2) = (y + 1)(x + 2) \). After development, we get \(2x + y = 2y + x \) i.e. \(x = y \). The function is injective.

 (iii) Let \(y \) be an element of the co-domain, \(\mathbb{R} \). To find if there exists a real number \(x \) such that \(f(x) = y \), we solve the equation \(f(x) = y \), i.e. \((x + 1)/(x + 2) = y \). This becomes \(x + 1 = y(x + 2) \), i.e. \(x(1 - y) = 2y - 1 \), which has a solution if and only if \(y \neq 1 \). Therefore we found one element of the co-domain \(y = 1 \) for which we cannot find an element \(x \) such that \(f(x) = y \). \(f \) is not surjective, therefore \(f \) is not bijective.

- **d)** \(f(x) = (x^2 + 1)/(x^2 + 2) \)

 (i) \(f \) is a function from \(\mathbb{R} \) to \(\mathbb{R} \), as its domain is \(\mathbb{R} \).

 (ii) Is \(f \) injective? We note that \(f(1) = f(-1) \): \(f \) is not injective, therefore \(f \) is not bijective.

Exercise 2

Let \(S = \{-1, 0, 2, 4, 7\} \). Find \(f(S) \) if:

- **a)** \(f(x) = 1 \)

 Since \(f(x) = 1 \) for all elements of \(S \), \(f(S) = \{1\} \).

- **b)** \(f(x) = 2x + 1 \)

 \(f(-1) = -1 \), \(f(0) = 1 \), \(f(2) = 5 \), \(f(4) = 9 \), and \(f(7) = 15 \). Therefore \(f(S) = \{-1, 1, 5, 9, 15\} \).
• c). \(f(x) = \left[\frac{x}{2} \right] \)
\(f(-1) = -1, f(0) = 0, f(2) = 0, f(4) = 0, \) and \(f(7) = 2. \) Therefore \(f(S) = \{-1, 0, 1\}. \)

• d). \(f(x) = \left[\frac{x^2+1}{3} \right] \)
\(f(-1) = 0, f(0) = 0, f(2) = 1, f(4) = 5, \) and \(f(7) = 16. \) Therefore \(f(S) = \{0, 1, 5, 16\}. \)

Exercise 3

Let \(S \) be a subset of a universe \(U. \) The characteristic function \(f_S \) of \(S \) is the function from \(U \) to the set \(\{0, 1\} \) such that \(f_S(x) = 1 \) if \(x \) belongs to \(S \) and \(f_S(x) = 0 \) if \(x \) does not belong to \(S. \) Let \(A \) and \(B \) be two sets. Show that for all \(x \) in \(U, \)

• a). \(f_{A \cap B}(x) = f_A(x) f_B(x) \)
Let \(x \) be an element of \(U. \) Let us call \(LHS(x) = f_{A \cap B}(x) \) and \(RHS(x) = f_A(x) f_B(x). \) We distinguish two cases:
(i) \(x \in A \cap B. \) Then \(LHS(x) = f_{A \cap B}(x) = 1, \) by definition of \(f_{A \cap B}. \) Also, since \(x \in A \cap B, \)
then \(x \in A \) and \(x \in B, \) therefore \(f_A(x) = 1 \) and \(f_B(x) = 1, \) i.e. \(RHS(x) = 1. \)
(ii) \(x \notin A \cap B. \) Then \(LHS(x) = f_{A \cap B}(x) = 0, \) by definition of \(f_{A \cap B}. \) Also, since \(x \notin A \cap B, \)
then \(x \notin A \) or \(x \notin B, \) therefore \(f_A(x) = 0 \) or \(f_B(x) = 0, \) i.e. \(RHS(x) = 0. \)
The property is therefore true for all \(x \) in \(U. \)

• b). \(f_{A \cup B}(x) = f_A(x) + f_B(x) - f_A(x) f_B(x) \)
Let \(x \) be an element of \(U. \) Let us call \(LHS(x) = f_{A \cup B}(x) \) and \(RHS(x) = f_A(x) + f_B(x) - f_A(x) f_B(x). \) We distinguish four cases:
(i) \(x \in A \) and \(x \in B. \) Then \(LHS(x) = f_{A \cup B}(x) = 1, \) as \(x \in A \cup B. \) Also, \(f_A(x) = 1 \) and \(f_B(x) = 1, \) therefore \(RHS(x) = 1 + 1 - 1 = 1. \)
(ii) \(x \in A \) and \(x \notin B. \) Then \(LHS(x) = f_{A \cup B}(x) = 1, \) as \(x \in A \cup B. \) Also, \(f_A(x) = 1 \) and \(f_B(x) = 0, \) therefore \(RHS(x) = 1 + 0 - 0 = 1. \)
(iii) \(x \notin A \) and \(x \in B. \) Then \(LHS(x) = f_{A \cup B}(x) = 1, \) as \(x \in A \cup B. \) Also, \(f_A(x) = 0 \) and \(f_B(x) = 1, \) therefore \(RHS(x) = 0 + 1 - 0 = 1. \)
(iv) \(x \notin A \) and \(x \notin B. \) Then \(LHS(x) = f_{A \cup B}(x) = 0, \) as \(x \notin A \cup B. \) Also, \(f_A(x) = 0 \) and \(f_B(x) = 0, \) therefore \(RHS(x) = 0 + 0 - 0 = 0. \)
The property is therefore true for all \(x \) in \(U. \)

Exercise 4

Let \(n \) be an integer. Show that \(\left\lfloor \frac{n}{2} \right\rfloor \left\lceil \frac{n}{2} \right\rceil = \left\lfloor \frac{n^2}{4} \right\rfloor. \)
Let \(n \) be an integer. We define \(LHS(n) = \left\lfloor \frac{n}{2} \right\rfloor \left\lceil \frac{n}{2} \right\rceil \) and \(RHS(n) = \left\lfloor \frac{n^2}{4} \right\rfloor. \) Since we consider the division of \(n \) by \(2, \) we consider two cases:
(i) \(n \) is even. Then there exists \(k \in \mathbb{Z} \) such that \(n = 2k. \) Then:
\(\left\lfloor \frac{n}{2} \right\rfloor = k, \left\lceil \frac{n}{2} \right\rceil = k, \) therefore \(LHS(n) = k^2. \)
\(n^2 = 4k^2, \) therefore \(\left\lfloor \frac{n^2}{4} \right\rfloor = k^2, \) i.e. \(RHS(n) = k^2. \)
(ii) \(n \) is odd. Then there exists \(k \in \mathbb{Z} \) such that \(n = 2k + 1. \) Then:
\(\frac{n}{2} = k + \frac{1}{2}. \) Then, \(\left\lfloor \frac{n}{2} \right\rfloor = k, \left\lceil \frac{n}{2} \right\rceil = k + 1, \) therefore \(LHS(n) = k^2 + k. \)
\(n^2 = 4k^2 + 4k + 1\), therefore \(\left\lfloor \frac{n^2}{4} \right\rfloor = k^2 + k\), i.e. \(RHS(n) = k^2 + k\).

The property is therefore true for all \(n\) in \(\mathbb{Z}\).