Exercise 0

Additional problems on proofs:
 a) Let \(x \) and \(y \) be two integers. Show that if \(2x+5y=14 \) and \(y \neq 2 \), then \(x \neq 2 \).
 b) Let \(x \) and \(y \) be two integers. Show that if \(x^2+y^2 \) is odd, then \(x+y \) is odd.

Exercise 1

Determine whether each of these functions is a bijection from \(\mathbb{R} \) to \(\mathbb{R} \):
 a) \(f(x) = 2x+4 \)
 b) \(f(x) = x^2+1 \)
 c) \(f(x) = \frac{x+1}{x+2} \)
 d) \(f(x) = \frac{x^2+1}{x^2+2} \)

Exercise 2

Let \(S = \{-1,0,2,4,7\} \). Find \(f(S) \) if:
 a) \(f(x) = 1 \)
 b) \(f(x) = 2x+1 \)
 c) \(f(x) = \left\lfloor \frac{x}{5} \right\rfloor \)
 d) \(f(x) = \left\lfloor \frac{x^2+1}{3} \right\rfloor \)

Exercise 3

Let \(S \) be a subset of a universe \(U \). The characteristic function \(f_S \) of \(S \) is the function from \(U \) to the set \(\{0,1\} \) such that \(f_S(x) = 1 \) if \(x \) belongs to \(S \) and \(f_S(x) = 0 \) if \(x \) does not belong to \(S \). Let \(A \) and \(B \) be two sets. Show that for all \(x \) in \(U \),
 a) \(f_{A\cap B}(x) = f_A(x) \cdot f_B(x) \)
 b) \(f_{A\cup B}(x) = f_A(x) + f_B(x) - f_A(x) \cdot f_B(x) \)

Exercise 4

Let \(n \) be an integer. Show that \(\left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n}{2} \right\rfloor = \left\lfloor \frac{n^2}{4} \right\rfloor \).