Exercise 1: proofs

a) Let x and y be two integers. Show that if $2x + 5y = 14$ and $y \neq 2$, then $x \neq 2$

b) Let x and y be two integers. Show that if $x^2 + y^2$ is odd, then $x + y$ is odd

Exercise 2: floor and ceiling

a) Let x be a real number. Show that $\left\lfloor \frac{x}{2} \right\rfloor = \left\lfloor \frac{x}{4} \right\rfloor$

b) Show that if n is an odd integer, then $\left\lceil \frac{n^2}{4} \right\rceil = \frac{n^2 + 1}{3}$

Exercise 3: Growth of functions

a) Show that if a function $f(x)$ from \mathbb{R} to \mathbb{R} is $O(x)$, then $f(x)$ is $O(x^2)$.

b) Show that the function $f(n) = n \log(n^2 + 1) + \frac{\log(n)}{n^2 + 1}$ is $O(n \log(n))$