Discrete Mathematics

ECS 20 (Fall 2017)

Patrice Koehl
koehl@cs.ucdavis.edu

October 11, 2017

Homework 1 - For 10/5/2017

Exercise 1

Let A and B be two natural numbers. Follow the proof given below and identify which step(s) is (are) not valid.

<table>
<thead>
<tr>
<th>Step #</th>
<th>Equation</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A = B</td>
<td>Assumption</td>
</tr>
<tr>
<td>2</td>
<td>A × A = B × A</td>
<td>Multiply by B on each side</td>
</tr>
<tr>
<td>3</td>
<td>A² − B² = AB − B²</td>
<td>Subtract B² on each side</td>
</tr>
<tr>
<td>4</td>
<td>(A − B)(A + B) = (A − B)B</td>
<td>Factorize</td>
</tr>
<tr>
<td>5</td>
<td>A + B = B</td>
<td>Simplify: divide by A-B</td>
</tr>
<tr>
<td>6</td>
<td>B + B = B</td>
<td>Base on step 1, A = B, therefore A + B = B + B</td>
</tr>
<tr>
<td>7</td>
<td>2B = B</td>
<td>By definition, B + B = 2B</td>
</tr>
<tr>
<td>8</td>
<td>2 = 1</td>
<td>Simplify: divide by B</td>
</tr>
</tbody>
</table>

There is only one mistake in the proof, in step 5: we cannot divide by A − B as A = B, i.e. A − B = 0!!

Exercise 2

Prove the following statements:

a) The sum of any three consecutive even numbers is always a multiple of 6

Let N be an even number. There exists an integer number k such that n = 2k. The two even numbers that follows N are N + 2 and N + 4, which can be rewritten as 2k + 2 and 2k + 4.
Let S be the sum of these three consecutive even numbers. Then:

\[
S = N + N + 2 + N + 4
\]
\[
= 2k + 2k + 2 + 2k + 4
\]
\[
= 6k + 6
\]
\[
= 6(k + 1)
\]

As $k + 1$ is an integer, S is a multiple of 6. As this is true for all values of N, the proposition is always true.

b) The sum of any four consecutive odd numbers is always a multiple of 8

Let N be an odd number. There exists an integer number k such that $N = 2k + 1$. The three odd numbers that follows N are $N + 2$, $N + 4$, and $N + 4$, which can be rewritten as $2k + 3$, $2k + 5$ and $2k + 7$. Let S be the sum of these four consecutive odd numbers. Then:

\[
S = 2k + 1 + 2k + 3 + 2k + 5 + 2k + 7
\]
\[
= 8k + 16
\]
\[
= 8(k + 2)
\]

As $k + 2$ is an integer, S is a multiple of 8. As this is true for all values of N, the proposition is always true.

c) Prove that if you add the squares of two consecutive integer numbers and then add one, you always get an even number.

Let N be an integer number. The number that follows N is $N + 1$. Let S be the sum of the squares of these two consecutive numbers. Then:

\[
S = N^2 + (N + 1)^2
\]
\[
= N^2 + N^2 + 2N + 1
\]
\[
= 2N^2 + 2N + 1
\]

Therefore,

\[
S + 1 = 2(N^2 + N + 1)
\]

As $(N^2 + N + 1)$ is an integer, $S + 1$ is a multiple of 2, i.e. an even number. As this is true for all values of N, the proposition is always true.

Exercise 3

Let x be a real number. Solve the equation $3^{2x} - 2(3^x) + 1 = 0$.

Solution: Let x be a real number. Let us define $P(x) = 3^{2x} - 2(3^x) + 1$. We simplify $P(x)$::

\[
P(x) = 3^{2x} - 2(3^x) + 1
\]
\[
= (3^x)^2 - 2(3^x) + 1
\]
Let us define \(y = 3^x \). Substituting in the equation above, we get:

\[
P(x) = y^2 - 2y + 1
= (y - 1)^2
\]

Solving \(P(x) = 0 \) is therefore equivalent to solving \((y - 1)^2 = 0\), which has only one solution, \(y = 1 \). Therefore

\[
(3^x) = 1
\]

Taking the \(\text{Log} \) of this equation:

\[
x \text{Log}(3) = 0
\]

Therefore \(x = 0 \).

Substituting back into \(P(x) \): \(P(0) = 3^0 - 2 \times 3^0 + 1 = 1 - 2 + 1 = 0 \).

Exercise 4

Prove the following identities for \(p, q, m, n, x, \) and \(y \) real numbers:

a) \(8(p - q) + 4(p + q) = 2(p + 3q) + 10(p - q) \)

Let \(p \) and \(q \) be two real numbers, and let \(LHS = 8(p - q) + 4(p + q) \) and \(RHS = 2(p + 3q) + 10(p - q) \). Then:

\[
LHS = 8p - 8q + 4p + 4q
= 12p - 4q
\]

and

\[
RHS = 2p + 6q + 10p - 10q
= 12p - 4q
\]

Therefore \(LHS = RHS \) for all \(p \) and \(q \), and the identity is true.

b) \(x(m - n) + y(n + m) = m(x + y) + n(y - x) \)

Let \(x, y, m \) and \(n \) be four real numbers, and let \(LHS = x(m - n) + y(n + m) \) and \(RHS = m(x + y) + n(y - x) \). Then:

\[
LHS = xm - xn + yn + ym
\]

and

\[
RHS = xm - xn + ym + yn
\]

Therefore \(LHS = RHS \) for all \(x, y, n \) and \(m \), and the identity is true.
c) \((x + 3)(x + 8) - (x - 6)(x - 4) = 21x\)

Let \(x\) be a real number and let \(LHS = (x + 3)(x + 8) - (x - 6)(x - 4)\) and \(RHS = 21x\). Then:

\[
LHS = x^2 + 8x + 3x + 24 - x^2 + 4x + 6x - 24 = 21x = RHS
\]

The identity is true for all \(x\).

d) \(m^8 - 1 = (m^2 - 1)(m^2 + 1)(m^4 + 1)\)

Let \(m\) be a real number and let \(LHS = m^8 - 1\) and \(RHS = (m^2 - 1)(m^2 + 1)(m^4 + 1)\). Then

\[
LHS = (m^4)^2 - 1^2 = (m^4 - 1)(m^4 + 1) = ((m^2)^2 - 1)(m^4 + 1) = (m^2 - 1)(m^2 + 1)(m^4 + 1) = RHS
\]

The identity is true for all \(m\).

Extra credit

Let us consider a floor covered with square tiles; all the tiles have the same size, with Width=Height=A. We drop a coin of radius R on the floor. What is the probability that the coin falls on top of (at least) one line that delimits a tile? We assume such a line to be infinitesimally thin.

Let us draw a figure so that we have visual representation of the problem:

![Figure 1: A representation of the floor](image)

We only need to consider one tile. When a coin falls in that tile, there are three situations to consider:
i) The coin falls on one of the line (type 1 on the figure); the center of that coin must be within a distance \(R \) from the line

ii) The coin just touches the line (type 2 on the figure); the center of that coin is at distance \(R \) from the line

iii) The coin does not touch a line (type 3 on the figure); the center of that coin is inside the red square, at a distance at least \(R \) from a line.

The probability \(P_{NT} \) that the coin does not touch the line is therefore the ratio of the area of the red square and the area of a tile.

Area of a tile: \(A_T = D^2 \)
Area of the red square: \(A_R = (D - 2R)^2 \)
Therefore:

\[
P_{NT} = \frac{(D - 2R)^2}{D^2}
\]

and the probability \(P_T \) that the coin touches a line is:

\[
P_T = 1 - P_{NT} = \frac{4RD - 4R^2}{D^2}
\]