Exercise 1

Show that this implication is a tautology, by using a truth table:

\[(p \lor q) \land (p \rightarrow r) \land (q \rightarrow r) \rightarrow r \]

Exercise 2

Show that \((p \lor q) \land (\neg p \lor r) \rightarrow (q \lor r) \) is a tautology

Exercise 3

a) Let \(x \) be a real number. Show that if \(x^2 \) is irrational, then \(x \) is irrational.

b) Based on question a), can you say that “if \(x \) is irrational, it follows that \(x^2 \) is irrational.”?

Exercise 4:

Prove that a square of an integer ends with a 0, 1, 4, 5 6 or 9. (Hint: let \(n = 10k+l \), where \(l = 0, 1, \ldots, 9 \))

Exercise 5:

Prove that if \(n \) is a positive integer, then \(n \) is even if and only if \(5n+6 \) is even.

Exercise 6:

Prove that either \(3x10^{450} + 15 \) or \(3x10^{450} + 16 \) is not a perfect square. Is your proof constructive, or non-constructive?

Exercise 7:

Prove or disprove that if \(a \) and \(b \) are rational numbers, then \(a^b \) is also rational.

Exercise 8:

Prove that at least one of the real numbers \(a_1, a_2, \ldots, a_n \) is greater than or equal to the average of these numbers. What kind of proof did you use?

Exercise 9:

The proof below has been scrambled. Please put it back in the correct order.
Claim: For all \(n \geq 9 \), if \(n \) is a perfect square, then \(n-1 \) is not prime.

Since \((n-1)\) is the product of 2 integers greater than 1, we know \((n-1)\) is not prime \((1) \)

Since \(m \geq 3 \), it follows that \(m-1 \geq 2 \) and \(m+1 \geq 4 \) \((2) \)

Let \(n \) be a perfect square such that \(n \geq 9 \) \((3) \)

This means that \(n-1 = m^2-1 = (m-1)(m+1) \) \((4) \)

There is an integer \(m \geq 3 \) such that \(n=m^2 \) \((5) \)

Exercise 10
Prove that these four statements are equivalent: (i) \(n^2 \) is odd, (ii) \(1-n \) is even, (iii) \(n^3 \) is odd, (iv) \(n^2+1 \) is even.

Extra credit:
Use Exercise 8 to show that if the first 10 strictly positive integers are placed around a circle, in any order, then there exist three integers in consecutive locations around the circle that have a sum greater than or equal to 17.